
www.manaraa.com

Acknowledgements

We want to acknowledge the following people for providing the inspiration, insights and guidance that helped
make this work possible: Guy Lohman, Hamid Pirahesh, Ashraf Aboulnaga, Holger Kache, Aakash Bordia,
Tina Mukai and Anjali Grover.

A Learning Optimizer for a Federated Database
Management System

S. Ewen# M. Ortega-Binderberger* V. Markl+

#IBM Germany *IBM Silicon Valley Lab +IBM Almaden Research Center
Am Fichtenberg 1 555 Bailey Road 650 Harry Road
71083 Herrenberg San Jose, CA San Jose, CA

Germany USA USA

ewens@de.ibm.com
{mortega, marklv}@us.ibm.com

Abstract: Optimizers in modern DBMSs utilize a cost model to choose an
efficient query execution plan (QEP) among all possible ones for a given query.
The accuracy of the cost estimates depends heavily on accurate statistics about the
underlying data. Outdated statistics or wrong assumptions in the underlying
statistical model frequently lead to suboptimal selection of QEPs and thus to bad
query performance. Federated systems require additional statistics on remote data
to be kept on the federated DBMS in order to choose the most efficient execution
plan when joining data from different datasources. Wrong statistics within a
federated DBMS can cause not only suboptimal data access strategies but also
unbalanced workload distribution as well as unnecessarily high network traffic and
communication overhead.

The maintenance of statistics in a federated DBMS is troublesome due to the
independence of the remote DBMSs that might not expose their statistics or use
different models and not collect all statistics needed by the federated DBMS.

We present an approach that extends DB2s learning optimizer to automatically
find flaws in statistics on remote data by extending its query feedback loop
towards the federated architecture. We will discuss several approaches to get
feedback from remote queries and present our solution that utilizes local query
feedback and remote query feedback, and can also trigger and drive iterative
sampling of remote data sources to retrieve information needed to compute
statistics profiles. We provide a detailed performance study and analysis of our
approach, and demonstrate in a case study a potential query execution speedup in
orders of magnitude while only incurring a moderate overhead during query
execution.

87

www.manaraa.com

1. Introduction

Modern database management systems (DBMSs) perform query optimization, i.e., the
selection of the best possible query execution plan (QEP), by enumerating and costing
all or a subset of possible QEPs, and then selecting the cheapest one. A query execution
plan is a directed data flow graph, where nodes denote operations, and edges are input
streams from other operators or tables in the database. Estimating the cost of a QEP
requires computing the cardinality, i.e., the number of rows to be processed, for each
node (intermediate step) in the QEP. The cost model uses statistics and various
assumptions to compute the selectivity of any selection and join node in the QEP, as well
as distinct values for grouping, projection, and aggregation nodes. Statistics that are kept
in the system catalog include the number of rows in a table, the distribution of values in
columns, and joint statistics on the correlation of groups of columns for more advanced
optimizers. The most important and troublesome assumption is the independence
assumption, which states that the data in two or more columns is independent, unless
otherwise stated by column group statistics. This assumption simplifies the model and
the need to store complex statistics, as it allows for multiplying the individual
selectivities of individual predicates in order to compute the selectivity of a conjunctive
predicate restricting multiple columns. Outdated statistics or the violation of assumptions
can cause the optimizer to misestimate the intermediate cardinalities and may lead to the
selection of a suboptimal plan, which in turn results in bad query performance. Most
prevalent errors are the wrong allocation of runtime resources, wrong join orders, or
selection of the wrong physical implementation of an operator (e.g., nested-loop join
instead of hash-join).

On a federated DBMS, the optimizer has the additional task to determine how to
distribute the workload over the datasources, considering the overhead of
communicating with the remote source. For instance, joining tables from different
sources may be realized by transferring a complete table and performing the join locally,
or transferring only the rows matching the join predicate. Because of this local vs.
remote decision, the performance loss through poor QEPs in federated systems is
potentially a lot higher than for purely local database systems or database systems in a
distributed, non federated architecture. Federated plans are costed with the size of the
remote query results, estimated through the statistics the optimizer has on the remote
data.

For statistics in non-federated environments several approaches have been suggested to
help keeping them up to date, by monitoring Update/Delete/Insert (UDI) activity and
changes to proactively determine when and where statistics need to be recomputed. For
statistics on remote data in a federated DBMS, this clearly is not applicable, as the
majority of the workload on the remote datasource will most likely not go through the
federated system. Our approach utilizes an autonomic query feedback (QF) loop
following the architecture of DB2s learning optimizer LEO, where plans and runtime
monitor output are consecutively analyzed to find flaws in statistics and create
recommendations for gathering or refreshing statistics.

88

www.manaraa.com

The major difference to the non federated learning optimizer is the query monitoring
component. Since an integrated runtime monitor does not exist for remote datasources in
general, monitoring needs to utilize monitoring tools of the remote databases or cleverly
re-write SQL-statements in order to piggy-back on query execution. Alternatively, a set
of additional query related count statements can obtain the cardinalities from remote
base tables, possibly accelerated by sampling techniques. The learning optimizer can use
the statistics obtained through any of these methods to compute profiles that declare
what statistics are needed to overcome the estimation errors. In that sense, this approach
behaves reactively and helps the optimizer to more accurately estimate cardinalities for
later queries that use same or similar selections of predicates.

The remainder of this paper is organized as follows: Section 2 provides background on
federated database systems and the special considerations taken into account when
optimizing queries for a federated database system. The section also describes the query-
feedback architecture of DB2s learning optimizer LEO. Section 3 describes the
mechanism of automated statistics profiling used by the learning optimizer, especially
the analysis of predicates and column correlations. In Section 4 we discuss and evaluate
several approaches to implement a runtime monitor for federated queries. Section 5
shows how to exploit the query feedback. Section 6 presents a case study for a realistic
workload scenario. Sections 7 surveys related work. We give our conclusions as well as
an outlook on future work in Section 8.

2. Background

Our approach is to extend the learning optimizer towards federated database systems.
This section gives an overview of both the Learning Optimizer (LEO) used in DB2s non-
federated mode, as well as of DB2 federated technology.

2. 1 LEO – DB2s Learning Optimizer

LEO [MLR03] exploits empirical results from actual executions of queries to validate the
optimizer’s model incrementally, deduce what part of the optimizer’s model is in error,
and compute adjustments to the optimizer’s model. LEO is comprised of four
components: a component to save the optimizer’s plan, a monitoring component, an
analysis component, and a feedback exploitation component. The analysis component is
a standalone process that may be run separately from the DB2 server, and even on
another system. The remaining three components are modifications to the DB2 server:
plans are captured at compile time by an addition to the code generator, monitoring is
part of the runtime system, and feedback exploitation is integrated into the optimizer.
The four components can operate independently, but form a consecutive sequence that
constitutes a continuous learning mechanism by incrementally capturing plans,
monitoring their execution, analyzing the monitor output, and computing adjustments to
be used for future query compilations.

89

www.manaraa.com

Figure 1 shows how LEO is integrated into the architecture of DB2. The left part of the
figure shows the usual query processing flow with query compilation, QEP generation
and optimization, code generation, and code execution. The gray shaded boxes show the
changes made to regular query processing to enable LEO’s feedback loop: for any query,
the code generator dumps essential information about the chosen QEP (a plan
“skeleton”) into a special file that is later used by the LEO analysis daemon. In the same

way, the runtime system provides
monitored information about
cardinalities for each operator in the
QEP. Analyzing the plan skeletons and
the runtime monitoring information, the
LEO analysis daemon computes
adjustments that are stored in the
system catalog. The exploitation
component closes the feedback loop by
using the adjustments in the system
catalog to provide adjustments to the
query optimizer’s cardinality estimates.

2. 2 Federated DBMS – DB2 II

Federated Database Management Systems are DBMSs that are able to interface with
independent, external datasources and provide a relational view over remote data.
Among those external datasources can be independent instances of the same database,
3rd party relational databases and also non-relational datasources like spreadsheets and
flat files.

DB2 Information Integrator (DB2 II) extends DB2 UDB with federated capabilities.
DB2 II contains an extended query compiler that includes a remote statement generator
and extended pushdown analysis as well as a set of wrappers that encapsulate what is
unique to each remote datasource and mediate all requests between the DB2 II server
and the datasources. Figure 2 depicts the DB2 II architecture. The light gray shaded
boxes are Information Integrator specific extensions.

In a typical query that involves a nickname (a view of remote data, such as a table on
another relational DBMS), the optimizer develops an overall execution plan, which also
includes those parts of the QEP that will later on be executed by the remote sources,
based on the statistics it has on the remote data, to estimate the cardinalities of the results
that will come back from the remote source. It considers the additional costs of the
federated overhead and places a so-called ship-operator to determine at which point of
the query, the results should be communicated between the remote datasource and the
DB2 II server; this point is very dependent in the capabilities of the queried datasource.

Figure 1: LEO Architecture

90

www.manaraa.com

For all parts of the query that
appear below a ship-operator and
are thus marked to be executed
on a remote datasource, the
statement generator creates a
SQL statement, in the dialect of
the targeted datasource, which
represents this part of the QEP,
to be sent to the wrapper during
query execution. The wrapper
finally acts as a client to the
remote datasource, accesses it to
execute the received query
statement and parses the result
data into DB2s proprietary format. Though the capabilities of DB2 II go far beyond
connecting only relational datasources, we will focus on this subset of possible remote
datasources, as those are the ones used in the larger scenarios and warehouses that the
approach we present here targets.

3. Automated Statistics Profiling

Direct adjustments to catalog statistics from Query Feedback is not applicable due to
consistency reasons, as the QF only reflects isolated aspects of the data. What is
generated instead is a ranked set of statistic profiles, which declare what sorts of
statistics are needed and with what priority.

The continuous feedback process stores estimation errors determined by the plan and
runtime monitor in the Query Feedback Warehouse (QFW) where the Query Feedback
Analyzer (QFA) analyzes them to determine which tables have outdated statistics or lack
special sort of statistics. This QFA is in our case comprised of the components “Table
Cardinality Analyzer” (TCA), which finds deviations in estimated and actual table sizes,
and the “Correlation Analyzer” (COA), which can detect intra-table correlations and
recommend column group statistics. The architecture is that of figure 1; this section
describes the analysis daemon.

3.1 The Query Feedback Warehouse

The QFW (see Figure 3) is populated
periodically using the information generated
by the Plan Monitor (PM) and the Runtime
Monitor (RM). The data in the QFW is
organized into relational tables. A detailed
description can be found in [AHLL04].

Figure 2: DB2 II Architecture

Figure 3: Tables in the QFW

91

www.manaraa.com

3.2 Table Cardinality Analyzer

The TCA simply compares the estimated table cardinalities, with the actually observed
cardinalities to determine if the statistics for this table are outdated.

3.3 Correlation Analyzer

The COA focuses on pair-wise correlations between columns in a table, because
experiments indicate that the marginal benefit of correcting for higher-order correlations
is relatively small; see [IMHB04]. For each pair of columns that appear jointly in a QFW
record, the COA compares the actual selectivity of each conjunctive predicate to the
product of the actual selectivity of the Boolean factors of the conjunct, assuming that this
information is available. Denote by α1, α2, and α12 cardinalities of simple equality
predicates that are observed during execution of a query, and denote by m the cardinality
of the entire table. Then the COA deems the independence assumption to be valid if and

only if , where Θ (0, 1) is a small pre-specified parameter. Otherwise,
the COA declares that a correlation error of absolute magnitude |α12 - (α1α2 / m)| has
occurred. The analysis becomes more complicated when one or more of the actual
cardinalities are not available, as is often the case in practice. The COA deals with the
problem by estimating the missing information and adjusting the error-detection
threshold and estimate of the error magnitude accordingly.

4. Plan and Runtime Monitor for Federated Queries

Plan- and Runtime Monitoring is the mechanism used to gather the different cardinalities
used by the QFA to detect flaws in the statistics that were used to develop the QEP.
Statistics can be analyzed only through feedback from operators that are directly
influenced by them; in the case of statistics on remote data, those are the parts of the
QEP that occur below a ship operator. They are used to construct the remote query
statements and represent the optimizer's assumption of how those statements will get
executed.

4.1 Plan Monitor

The Plan Monitor (PM) is the component that stores a skeleton of the optimizer selected
QEP. In DB2, the QEP is translated into an internal format suitable for later execution,
so called sections. Only these sections are retained, the original QEP is dropped after
compile-time. To assemble Query Feedback, a slim version of the QEP is stored as a
skeleton containing only information relevant to the QFA.

For the federated PM, the skeleton is extended to also store the remote parts of the QEP
developed by the federated server's optimizer, which is translated into a SQL statement
and executed on remote datasources.

92

www.manaraa.com

The skeleton hence contains the local optimizer's assumption of how the statement
should get executed on the remote source, based on local statistics available about the
remote data. The actual QEP chosen by the remote server's optimizer will in many cases
deviate due to different statistics and capabilities.

4.2 Runtime Monitor

The Runtime Monitors (RM) task is to collect the actual cardinalities that correspond to
the estimates recorded by the Plan Monitor. In order to profile detailed column statistics,
cardinalities must be monitored predicate-wise rather than operator wise. For an operator
with three applied Boolean factors p1, p2, p3, it is inapplicable to collect the associated
cardinalities α1, α2, α3 individually, as this requires applying each predicate isolated to
the operators’ input stream. Rather than that, joint cardinalities are collected by applying
the next predicate to the output of the previous one, collecting in the above case the
actual cardinalities α1, α12, α123.

DB2s local RM, which is part of the LEO learning optimizer, piggy-bags on query
execution and counts the number of rows that pass through the runtime operators. For
federated queries, this RM monitors all local query parts. To supplement this runtime
information with the cardinalities for operators in the remote query parts, several
approaches are possible that can be categorized into three groups:

Immediate feedback can be obtained through the use of the remote datasources
proprietary monitoring mechanisms and finding the matching parts between the
federated optimizer's QEP and the remote server's QEP. This method has least overhead
of all but is also least applicable as it requires those mechanisms to be available on the
remote datasource. Utilizing query debugging tools is a method of this category.

A second way of obtaining immediate feedback is piggy-backing on the queries by
cleverly rewriting the SQL statements so that besides executing the query they also
return the intermediate cardinalities. The rewriting process ensures a query execution
plan that guarantees that the collected cardinalities match the estimates recorded by the
plan monitor. This piggy-backing is realized by either inserting table functions into the
query plan or splitting up the query into a set of common table expressions and
aggregating intermediate results as a side effect. This piggy-backing approach is highly
applicable, but has moderate performance overhead when using query rewriting on
databases that support common sub expressions, and high performance overhead when
using table functions.

The third possibility is using deferred feedback. At query compilation time, a set of
additional statements is generated that collect the intermediate cardinalities. Those
statements are executed only for remote queries that show problems; this method hence
has a selective overhead, which is potentially high, but applies only to a subset of queries
and appears in reserved timeframes (e.g., together with scheduled maintenance).
Furthermore, the performance of this method can be greatly improved by the use of
sampling techniques.

93

www.manaraa.com

Detailed evaluation of each
method is presented in the next
sections. Though DB2s RM
collects cardinalities for all
operators and can thus detect
correlations between columns
in different tables, the majority
of the corrections are
computed from feedback on
single tables, coming from
table access operators (QEP
leafs). Restricting the federated
RMs to collect only feedback
from table access operators offers a lot of space for improvements and the application of
advantageous techniques. Figure 4 shows the average overhead of monitoring a set of
queries through the methods described above, where scan means restricting the method
to be applied to base table scans only.

The overhead is given in percent of the original query execution time. It was measured
from remote statements executed on a commercial DBMS accessed through DB2 UDB
8.2 with Information Integrator.

Concluding from the specific overhead, the monitoring through proprietary tools
provides the best performance and least impact on the remote server. Still, this approach
is not applicable, as those mechanisms are not generally present. For immediate
feedback, the query rewriting method is the best approach, but has moderate overhead
and is only applicable on selected DBMSs that work efficiently with common sub
expressions.

In general, the sampling of table access predicates through additional count(*)
statements is an efficient approach. It works selectively for problem queries only, has
moderate overhead, and works asynchronously, hence not affecting regular query
execution and being able to use reserved maintenance timeframes.

4.2.1 Proprietary Monitoring Tools

The utilization of product specific monitoring tools, usually intended for manual
debugging of underperforming queries, is a way of using mechanisms built into the
runtime system of a remote datasource to obtain cardinalities of intermediate results.
Tools that can be used for that approach need to record the query execution plan with the
actually observed cardinalities for each operator.

A RM built on that method reads the cardinalities from the output of that tool and
transfers them back to the QFA for to be matched against the recorded cardinality
estimates. Naturally, as the remote datasources are independent from the federated
server, the actually chosen QEP will in many cases differ from the federated server’s
assumptions and observed cardinalities cannot be matched back to estimates.

Overhead

0
20

40
60
80

100
120

Tools Rewrite Rewrite
scan

UDF UDF
scan

Count(*)
CSE

Count(*)
sample

O
ve

rh
ea

d
(%

)

Overhead

200 195

Figure 4: Performance of federated RMs

94

www.manaraa.com

The biggest problem turns out to be a different choice in join order. Operators below the
joins, specifically base tables scan operators, can be matched regardless of that problem
and provide the majority of the feedback on predicates as they are supported in the
current QFW implementations.

This method offers minimal overhead during query execution; specifically the costs of
the remote server’s proprietary monitor or trace generator, which usually ranks within
few percent. This approach is after all not applicable, as there is no tool known to the
author that collects all predicate cardinalities needed by the QFA. For all operators that
apply multiple predicates, the cardinalities for applying only a subset of the predicates
could only be observed from different queries.

4.2.2 Query Rewriting through CTE

The method of query rewriting with common table expressions (CTE) provides
immediate feedback on intermediate cardinalities in one set with the regular query
results. The rewritten query represents each operator or predicate with a common table
expression, where expressions for non-leaf-level operators select from their children's
expressions to build a continuous data stream not re-executing any query parts. The
select query then builds a union of the output from the CTE that represents the root
operator and a count(*) statement with operator id and predicate id for each CTE. To be
able to bring those two parts into one result set, three numeric columns for the query
feedback data are appended to the columns of the query result. Columns not used are
filled by selecting null values. Figure 5 shows a simple and illustrative example how a
query is rewritten. Figure 6 gives the prototype algorithm to build the list of CTEs for
the rewritten query. When receiving the remote query results, the wrapper separates the
actual query results from the feedback information by checking the additional columns
of the input stream for null-values.

Figure 5: Query rewriting with CTE

Original Query & Execution Plan

SELECT col1, col2
FROM tab1 t1, tab2 t2
WHERE t1.X = 'AAA'
AND t2.Y = 'BBB'
AND t2.Z = 'CCC'
AND t1.A = t2.B

Rewritten Query

WITH
(SELECT col1, A FROM tab1 WHERE X = 'AAA') AS Q1,
(SELECT col2, Y, B FROM tab2 WHERE Z = 'CCC') AS Q2,
(SELECT col2, B FROM Q2 WHERE Y = 'BBB') AS Q3,
(SELECT col1, col2 FROM Q1, Q3 WHERE A = B) AS Q4

(SELECT col1, col2, NULL, NULL, NULL FROM Q4) UNION ALL
(SELECT NULL, NULL, 2, 1, COUNT(*) FROM Q1) UNION ALL
(SELECT NULL, NULL, 3, 1, COUNT(*) FROM Q2) UNION ALL
(SELECT NULL, NULL, 3, 2, COUNT(*) FROM Q3) UNION ALL
(SELECT NULL, NULL, 1, 1, COUNT(*) FROM Q4)

JOIN

Scan (p1) Scan (p2, p3)

JOIN

Scan (p1) Scan (p2, p3)

95

www.manaraa.com

Figure 6: Query rewriting algorithm (CTE Lists)

The given algorithm is base for further tuning. As an example, this algorithm blocks the
use of some index/fetch combinations, e.g. in nested loop joins. A possibility to
overcome this problem is to treat those operators as one unit, gaining speedup at the
costs of loosing some intermediate cardinalities.

The performance of this method is dependent on the remote server's ability to efficiently
work with common sub-expressions (CSE). Figure 7 shows the execution time overhead
of four queries compared with their rewritten statements on a commercial DBMS as the
remote datasource. Query one and two are simple table scans with one respectively two
predicates applied. Query three applies one predicate to a table and joins with another
table after an indexed key. Query four is comparable to the query used in figure 5. For
more complex queries, the overhead ranks roughly around 15%.

int buildCTEs(PlanOp op, String cteList, int pred, int tab) {

String thisCTE = "(";
addSelectList(thisCTE, op.propagatedCols);

if (pred <= 1) { // input from children or base table
if (input is base_table) {

addTableReference(thisCTE, op.base_table);
} else {

// build and reference all children
for (int i = 0; i < children(op); i++) {

tab = bldLists(op->child[i], cteList,
op->child[i].numPredicates, tab);

addTableReference(thisCTE, tab);
}

}
} else { // input from another predicate, same operator

tab = bldLists(op, cteList, pred - 1, tab);
addTableReference(thisCTE, tab);

}

// add current predicate
appendPredicate(thisCTE, pred);

// append other clauses (group by/order by/...)
...

// label this CTE
tab++;
thisCTE += ") AS Q" + tab;

// append this CTE to CTE list
cteList.append(thisCTE);

// return this CTE's number
return tab;

}

96

www.manaraa.com

The drawback of this method is not the
performance overhead of the side
aggregations. The rewriting enforces the
rough structure of the execution plan
and prohibits the remote datasource's
optimizer from selecting its very own
plan, which might look totally different
due to proprietary features, unmapped
indexes or additional statistics.
Restricting this method to rewrite the
queries partially and collect only
predicate cardinalities for table scans
gets around those problems as soon as the federated optimizer is aware of all available
indexes. The restricted query rewriting method is fast and applicable, providing all
feedback necessary to detect flaws in single table statistics.

4.2.3 Table functions

A runtime monitor that collects immediate feedback by piggy-backing on query
execution can be implemented by utilizing user defined functions (UDFs). A piped table
function that does not modify the data and simply increments a counter for each row it
pipes, is inserted between every operator respectively predicate in the QEP to count the
intermediate cardinalities as shown in figure 8. The pseudo code for such a function is
given in figure 9; operator and predicate id for the UDF's cardinality are passed as
parameters.

The overhead of the UDFs compared to the native data stream is extreme. Further more,
the federated optimizer enforces his best remote QEP through the insertion of the UDFs,
as through rewriting (4.2.2). Figure 10 presents a performance comparison for the same
four queries as used in the performance evaluation of the query rewriting method. Shown
is the performance of using UDFs for all cardinalities (UDF Comp.) and UDFs for all
predicates but no base table cardinality (UDF w/o base card).

Query Rewriting Performance

0

20

40

60

80

100

Query1 Query2 Query3 Query4E
xe

cu
ti

o
n

T
im

e
(r

el
at

iv
e)

Original rewritten

FUNCTION udf (table tab, int opId, int
predId)
RETURNS TABLE PIPED

INT counter = 0;

BEGIN
WHILE (next row from tab available)
{

PIPE next row;
counter = counter + 1;

}

INSERT opId,predId,counter INTO table;
END

Figure 7: Performance of query rewriting

Figure 8: Runtime monitoring through UDFs Figure 9: Runtime Monitor UDF pseudo code

97

www.manaraa.com

A first improvement to this method is not to use the UDFs to obtain the base table
cardinality, because this requires the whole table to be read and piped. Instead use UDFs
only after the first predicate has been applied and collect the base table cardinality
through a count(*) statement at the time
of the query feedback analysis. The
performance gain of this improvement
is illustrated also in figure 10. Some
additional applicability can be obtained
through restricting this method to
monitor base table cardinalities only, as
suggested in section 4.2.2, but this
method still stays behind the rewriting
method.

4.2.4 Count(*) Statements

Deferred feedback on cardinalities for operators and predicates in the QEP can be
obtained by issuing count(*) statements that are build upon the parts of the QEP below
the targeted operator or predicate. A RM build on this method creates during compile
time an additional count(*) statement for each operator in the QEP, containing in the
select clause additional constants to identify the associated operator and predicate. To
reduce the overhead, these statements can be concatenated using “union all”. Further
more, certain operators, which do not change the cardinality (e.g. basic sorts), are
excluded from the statement. A basic algorithm for creating those statements is given in
Figure 11, utilizing the federated server's statement generator.

Figure 11: Algorithm for count(*) RM statements

UDF Performance

0
100
200
300
400
500
600
700
800

Query1 Query2 Query3 Query4

E
xe

cu
ti

o
n

T
im

e
(r

el
at

iv
e)

Original UDF Comp. UDF w/o base card

generate_RM (PlanOperator op, String sql) {

if (op.input_card != op.output_card) { // check if relevant

// for all predicates
for (int i = 1; i < op.num_preds; i++) {

// invoke statementgen for op, including first i predicates
SQLStatement stmt = translate(op, i);
stmt.select_clause = "count(*)"

// nest in case of group by
if (stmt.groupby_clause)

sql += "SELECT count(*) from (" +stmt.getFullString()+ ")";
else

sql += stmt.getFullString();

sql += ") UNION ALL (";
}

}

for (int i = 0; i < op.numInputs; i++) // go over children
generate_RM(op.input[i], sql);

}

Figure 10: Performance of UDF
monitored queries

98

www.manaraa.com

The overhead of this method is extreme
again, Figure 12 shows for the same
four queries, as used in the performance
analysis of the query rewriting and
UDFs, the execution times of the
count(*) RM statements (overhead
only) and the original queries. The
extremely bad performance of those
statements originates from the fact that
for each operator and predicate, their
whole input plan has to be re-executed,
yielding an overall complexity class for a statement with n operators of O(n2). This can
be greatly improved by reusing intermediate results through Common Subexpression
Elimination (CSE). Instead of translating a separate statement for each plan operator and
predicate, a list of common table expressions (CTE) is built at the beginning of the
statement, where each CTE consists of the translation of this plan operator alone and
references the CTEs of the plan inputs. The actual statement is then simply a union of
count(*) statements over each CTE. This corresponds to the query rewriting method
without returning the query result and thus without extending the result set. The
algorithm is exactly the same (see figure 6), the performance overhead is slightly lower
than the execution time of the rewritten statements.

The fact that this approach works with deferred feedback brings a lot of advantages. It
has no overhead during query execution at all. The overhead in this approach are the
count(*) queries themselves, the time of their execution is somewhat independent from
the original query for which they were created. For several reasons, it makes sense to
issue those queries together with the analysis of the local QF. During this analysis, it can
be determined if the remote query part suffers from bad statistics at all, by comparing the
cardinalities at the ship operator. Only if the actual cardinalities fall outside a confidence
interval, the federated RM would be invoked; that way queries that perform well would
not suffer from any overhead. For all queries that are marked to be analyzed, the
conjunct predicate sets are duplicate eliminated so predicate subsets that appear in
multiple queries are analyzed only once, reducing the overall workload largely.

Updating the statistics though this method can be summed up as a three step procedure.
First, find the remote queries that suffer from deficiencies in the statistics by analysis of
local QF. Second, profile the statistics that are needed by collecting remote QF for those
queries. Third, compute the profiled statistics.

Count(*) Performance

0

50

100

150

200

250

Query1 Query2 Query3 Query4E
xe

cu
ti

o
n

T
im

e
(r

el
at

iv
e)

Original count(*) overhead

Figure 12: Performance overhead of count(*) RM

99

www.manaraa.com

4.2.5 Sampling Statements

This approach is an improvement to the count(*) approach. Restricting it to collect
feedback only on table access operators, sampling can be used to drastically reduce the
monitoring overhead of the count(*) statements.

Sampling is possible on different levels. A sampling process on row level would provide
representative samples usable for analysis, but would not reduce the overhead too much,
as the number of I/Os is unrelated high. A lot of pages would need to be read for one
single record contained. Hence, big savings are only observed when the records grow
very large, as then more pages can be skipped. The level used for this approach is system
level, where the pages themselves are sampled, thus reducing the number of I/Os
dramatically and speeding up the process. A problem with that method is that the
samples obtained through that method might be heavily biased and statistically not
robust and representative. This can be due to the fact that data is often clustered on pages
with respect to certain columns. To overcome that problem, multiple series of sampling
are run with changing sampling rates, observing where the results converge.

This approach comprises all the advantages of an asynchronous runtime monitor with
applicable performance and support on the targeted DBMSs.

5. A Query Feedback Analyzer for Federated Queries

The analysis of the QF gathered by the RM works as described in section 3. As the
federated system is more complex in architecture, it offers several aspects that can be
targeted beyond simple profiling of local statistics on remote data. Several actions are
recommended either for the federated server or for the remote datasource.

5.1 Actions on the federated server

A quick response to heavily misestimated cardinalities for remote queries is the creation
of statistics on non materialized data for that query, which behaves like a non
materialized view that has catalog statistics assigned. During query compilation, the
optimizer can match this view to a part of the query and take the output cardinality of
this part of the QEP to be the cardinality found in the catalog statistics of the view. When
for a remote query the estimated and actual cardinalities deviate greatly, such a view is
created from the SQL statement of the remote query and gets the locally observed
cardinality at the ship operator assigned. This response has no performance overhead on
the remote datasource at all, as it works only with local QF and would not need a RM for
the remote query. It has for that particular remote query the effect that the result
cardinality can be precisely estimated. However, this has no benefit for the optimization
of similar remote queries that differ in their selection of predicates and is thus only
applicable for small sets of repeatedly bad performing federated queries.

100

www.manaraa.com

5.2 Actions on the remote datasource

The federated QFA can indicate that the remote datasource should refresh its statistics.
In order to do that, it needs access to cardinality estimates computed by the remote
server's optimizer. Most DBMSs come with an explain plan feature where the optimizer
selected QEP is stored in a set of tables, which can be used for manual query debugging.
For our purpose, those tables are queried by the QFA to obtain the cardinality estimates.
Though the plans might deviate, the estimated cardinality at the topmost operator in the
QEP, which represents the estimated number of rows in the final result set, is in any case
comparable and gives conclusion if the remote server's optimizer has made grave
estimation errors for predicates throughout the QEP as a whole. This method is again
cheap, as no additional remote runtime monitoring is necessary, since the result set
cardinality is observed locally at the ship operator. Still, this method does not provide
enough feedback to make recommendations about the remote server's statistics, but it
will indicate that the remote server might not be using the optimal execution plan and
that actions need to be taken.

Another possible response is that the federated QFA can recommend is the usage of plan
hints, or similar features, to push the remote server's optimizer towards certain plan
considerations. General usage of those plan hints makes not too much sense, as it could
prohibit the remote server from taking advantage of proprietary features such as certain
indexes or clustered file structures.

In connection with the previously mentioned way to validate the remote servers
estimated result size, it can be used to compensate for join orders or implementations, in
case the remote datasource is unable to correctly model the data through its statistics.

6. Case Study

To validate the usefulness of a learning optimizer for federated DBMSs, a small case
study will point out what special problems bad statistics on remote data can cause for a
federated optimizer and how statistics as recommended by the QFA can lead to QEPs
that perform better in orders of magnitude.

This case study illustrates the performance gain through distribution and multi-column
statistics on remote data. The database used for this purpose is STEST, a synthetic four
table database holding information on cars and accidents. Its schema and setup is
illustrated in figure 13. A realistic scenario for such a setup would be the following: The
department of motor vehicles holds data about owners and cars, the police maintains an
accidents history and the social security offices tracks demographical data. The data used
in this database has several correlations and soft functional dependencies. Relations
between columns within the same tables are expressed in figure 14, where dotted lines
indicate soft functional dependencies and full lines correlations; the thicker the line, the
stronger the correlation. Table sizes are 1,000,000 rows for owner and demographics
1,500,000 rows for cars and 2,500,000 rows for accidents.

101

www.manaraa.com

Figure 13: Schema and database setup

Figure 14: Column correlations in STEST

The runtime monitor used with this scenario provided deferred feedback through the
count(*) with CSE method. For the performance comparison, we ran 50 queries on the
database where every query joins two to four tables and applies multiple, mostly
correlated, predicates.

STEST

Accidents

Demographics

Car Owner

id Integer
name Char(30)
city Char(30)
state Char(30)
country1 Char(30)
country2 Varchar(200)
country3 Char(30)

id Integer
make Char(20)
model Char(20)
color Char(20)
year Integer
ownerid Integer

id Integer
age Integer
salary Integer
assets Integer
ownerid Integer

id Integer
year Integer
seatbeltON Char
with Char(10)
driver Char(10)
damage Char(10)
carid Integer

Primary Key

Remote
2

Demo-
graphics

Remote
1

Owner,
Car

DB2 UDB 8.2
Information
Integrator

Accidents

Accidents

Demographics

Car

Owner

102

www.manaraa.com

The scatter plot in figure 15
shows the performance of
those queries running with and
without the statistics as
profiled by the QFA. Note that
almost all of the points lie
below the line of equivalence,
i.e. almost all queries benefited
from the adjustments, some in
orders of magnitude. Increases
in query execution time were
small and resulted from small
inaccuracies in the cost model. Most queries with average execution times benefited
modestly, while 'worst case' queries benefited dramatically.

The graph solely illustrates the advantage of column distribution and –group statistics for
federated queries, based on query feedback; the overhead of runtime monitoring is not
included. This is justifiable as the query execution and runtime monitoring work
asynchronously. Furthermore, an autonomic component like this is mostly used in
development environments rather than production environments. A common scenario is
to enable the learning optimizer while executing sample workloads during development
time and have it analyze the database and profile the needed statistics. During production
time, it would be switched off and the statistic profiles are used during maintenance time
to refresh the catalogue statistics.

Two special issues that arise only in federated queries are the local join strategies and the
placement of the ship operator. Both have big impact on the query execution speed and
resource consumption. How those issues profit from statistical adjustments is illustrated
with two selected queries

6.1 Local join strategies

The joining of data from different sources is performed locally on the federated server.
Besides the join order, the type of join operator has a grave impact on the overall
performance. How big the impact can be shows the following query, where the tables are
distributed (owner and car on remote server 1, accidents on remote server 2).

SELECT o.name, a.driver
FROM owner o, car c, accidents a
WHERE o.id=c.ownerid
AND c.id=a.carid
AND o.country3='US'
AND o.state='California'
AND o.city='San Francisco

Query Performance Comparison

1

10

100

1000

10000

1 10 100 1000 10000 100000

Execution Time w/o adjustments

E
xe

cu
tio

n
Ti

m
e

w
ith

ad
ju

st
m

en
ts Degradation

Improvement

Figure 15: Performance scatter plot

103

www.manaraa.com

Through the high correlation between the columns country3, state and city, the estimated
cardinalities for all operators above the scan on table 'owner' are very low. The optimizer
thus chooses an execution plan as in the left of figure 16, where the table 'accidents' is
not completely transferred to be joined locally, but instead queried multiple times and
only the rows that match the join predicate are transferred. This is a good strategy if the
number of rows to be joined is in fact very small, as the overhead of several scans is
potentially smaller than that of transferring millions of records. Since the number of

rows is actually a lot higher, this
access strategy results in
critically bad performance.
Correcting for correlations by
column group statistics as
suggested by the QFA, results in
the plan displayed in the right of
figure 16. The speedup factor of
this query through the
recommended statistics is more
than 100.

6.2 Workload distribution

Different intermediate cardinality estimates cause the optimizer in some situations to
place the ship operator and distribute the workload differently. For example it might
choose to have an operator executed locally instead of remotely when this turns out to be
cheaper in costs. Suppose a scenario, where the tables referenced in the following query
reside all on the same remote server and the query is thus completely pushdownable.

SELECT city, COUNT(*), avg(assets)
FROM owner, car, demographics
WHERE car.ownerid = owner.id
AND demographics.ownerid = owner.id
AND make = 'Ford'
AND model = 'Taurus'
AND salary > 516

GROUP BY city

Using tables with schema and data as describes in the general case study, the optimizer
originally estimates 31 rows to result from the joins and to transfer those rows and
aggregate locally. Due to the heavy correlations in the underlying data, this is vastly
underestimated; the actual cardinality after the last join is 125144 rows, which get
transferred. After the generation of column group statistics, as suggested by the QFA, the
estimation was close enough for the optimizer to push the aggregation down and transfer
the aggregated results, 246 rows. The overall reduction in network traffic through this
adjustment was by a factor of more than 500.

Scan Scan

HSJN Scan

NLJN

ShipShip

Ret

Car Owner

Accid. Scan Scan

HSJN
Scan

HSJN

Ship Ship

Ret

Car Owner

Accid.

Regular stats Added recomnd. stats

Figure 16: QEPs for federated query

104

www.manaraa.com

7. Related Work

This paper discusses Federated database extensions to IBM's DB2 Learning Optimizer.
A good overview of the DB2 optimizer can be found in [SACLP79] and [LMH97].
[MLR03] and [ML02] discuss LEO, the optimizer extensions to support the learning
framework, which forms the basis of our work.

There are many papers in the literature on the topic of federated optimizer design
[LOG93, LD99], but the majority assumes the pre-existence of statistics and focus on the
communications protocol and the method of searching the query plan space. Likewise,
numerous papers exist discussing extensible optimizers [PGH98, GD87, GM93, PHH92,
SJ01]. Our work is orthogonal to these efforts since we focus on obtaining better
selectivity statistics for the complex subclass of correlated columns.

Our work essentially centers on learning the cost models of the underlying data sources.
[DH02] is closest to our work when it writes how the “cost of costing” in a federated
database is a major factor in the overall cost. Unlike our approach, which allows data
sources to remain autonomous, [DH02] uses a distributed set of optimizer/ bidder
components. More importantly, it assumes that accurate statistics are already available
and focuses on a distributed negotiation of these statistics across its optimizer/ bidder
components, while we are focused on the practical problem of obtaining such statistics in
the first place. Incidentally, [DH02] also uses as a base a System-R type optimizer
[SACLP79] as its core.

In [ZL94], the authors obtain accurate estimates for the cost parameters (e.g., table,
index access costs, etc.) by executing remote queries from several carefully chosen
categories. Categories are based on the existence of indices, predicates with constants,
etc. [DKS92] is a similar paper where the authors focus on obtaining estimates for the
cost parameters themselves. Our approach differs in that we already know of the
existence of indices and other access paths, but also know the base table access costs.
What our approach focuses on is to determine the selectivity parameters for correlated
columns in a federated database.

8. Conclusions

Our approach extends a learning optimizer for non-federated databases with federated
technologies. We have shown a set of methods to implement a runtime monitor for
remote queries, providing immediate feedback during query execution or deferred
feedback. By helping federated systems to learn from underperforming queries, this
method pushes the idea of autonomic computing further into federated environments.

A prototype of an asynchronous runtime monitor has been implemented into a
development build of DB2 UDB 8.2. The case study based on this prototype shows, how
reliable statistics that correctly model the remote data are very important for federated
systems to estimate the query result sizes. Performance gain for queries, especially when
joining over several remote sources, can be in orders of magnitude.

105

www.manaraa.com

Trademarks:

DB2, DB2 Universal Database, IBM, Information Integrator are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Future work on this topic is the improvement of the runtime monitor through sampled
count(*) queries with dynamically adjusted statistical confidence intervals. Further more,
analysis of the remote server's QEP and the included estimates from an explain interface,
their validation and methods to use those as a replacement query feedback are to be
explored as follow up.

References

[AHLL04] A. Aboulnaga, P. Haas, S. Lightstone, G. Lohman, V. Markl, I. Popivanov,
V. Raman. Automated Statistics Collection in DB2 Stinger. Proc. VLDB 2004.

[DH02] Amol Deshpande, Joseph M. Hellerstein. Decoupled Query Optimization for
Federated Database Systems. Proc. IEEE ICDE, 2002.

[DKS92] W. Du, R. Krishnamurthy, and M.-C. Shan. Query optimization in a heterogeneous
DBMS. Proc VLDB, 1992.

[GD87] G. Graefe, D. J. Dewitt. The EXODUS Optimizer Generator. In Proc ACM SIGMOD,
1987.

[GM93] G. Graefe, W. McKenna. The Volcano Optimizer Generator: Extensibility and
Efficient Search. In Proc 12th IEEE ICDE, 1993.

[IBM02] DB2 Universal Database for iSeries - Database Performance and Query Optimization.
IBM Corp., 2002.

[IBM04] DB2 v8.2 Performance Guide. IBM Corp., 2004.
[IMHB04] I. F. Ilyas, V. Markl, P. J. Haas, P. G. Brown, A. Aboulnaga. CORDS: Automatic

discovery of correlations and soft functional dependencies. Proc. 2004 ACM
SIGMOD, June 2004.

[LD99] Anhai Doan and Alon Levy. Efficiently ordering query plans for Data Integration.
Proc. IEEE ICDE 1999.

[LLZ02] S. Lightstone, G. Lohman, D. Zilio. Toward autonomic computing with DB2
Universal Database. SIGMOD Record, 31(3), 2002.

[LMH97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, Jun Yang.Optimizing
Queries across Diverse Data Sources. Proc. of the 23rd VLDB conference.

[LOG93] Hongjun Lu, Beng-Chin Ooi, Cheng-Hian Goh. Multidatabase Query Optimization:
Issues and Solutions. Proc RIDE, 1993.

[ML02] Volker Markl, Guy Lohman. System performance and benchmarking: Learning table
access cardinalities with LEO. Proc. ACM SIGMOD June 2002.

[MLR03] V. Markl, G. M. Lohman, V. Raman. LEO: An autonomic query optimizer for DB2.
January 2003 IBM Systems Journal, Volume 42 Issue 1

[PGH98] Yannis Papakonstantinou, Ashish Gupta, Laura Haas. Capabilities-Based Query
Rewriting in Mediator Systems. Proc. 4th International Conference on Parallel and
Distributed Information Systems, 1998.

[PHH92] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible/Rule Based Query Rewrite
Optimization in Starburst. In Proc. ACM SIGMOD, June 1992.

[SACLP79]P. G. Selinger, M. M. Astrahan, D. D. Chamberlain, R. A. Lorie, and T. G. Price.
Access Path Selection in a Relational Database. Proc. ACM SIGMOD, pp23-34, 1979.

[SJ01] Giedrius Slivinskas and Christian S. Jensen. Enhancing an Extensible Query
Optimizer with Support for Multiple Equivalence Types. Lecture Notes in Computer
Science, vol. 2151, 2001.

[SLMK01] M. Stillger, G. M. Lohman, V. Markl, M. Kandil. LEO - DB2s Learning Optimizer.
Proc. 27th VLDB, 19-28, 2001.

[ZL94] Q. Zhu and P.A. Larson. A query sampling method of estimating local cost parameters
in a multidatabase system. Proc IEEE ICDE, 1994.

